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Today, we will finish the “physics proof” of the Atiyah-Singer index theorem for the Dirac
operator D on a curved manifold M . For this operator, as we saw in the previous lecture,
the index theorem reads

ind(D) =

∫
M

Â(M) (14.1)

where the right hand side involves the Â-genus that can be written as

Â(M) =
n∏
j=1

xj/2

sinhxj/2
. (14.2)

Here, xj are the “block diagonalized” components of the anti-symmetric curvature two-form

1

2π
Rµν ≡

1

2π

(
1

2
Rµνρσdx

ρ ∧ dxσ
)

=


0 x1

−x1 0
. . .

0 xn
−xn 0

 . (14.3)

As before, in the proof below we are closely following Nakahara, section 12.10.

Recall the philosophy of index theorems: we want to relate an analytical quantity –
the left hand side of (14.1), which is built up of dimensions of kernels – to a topological
quantity: the right hand side of (14.1), which is the integral of a characteristic class over
the manifold. To achieve this, in lecture 12, we have rewritten the left hand side as a path
integral with periodic boundary conditions:

ind (D) =

∫
PBC

DxDψ exp

(
−
∫ t=β

t=0

L[x, ψ]dt

)
, (14.4)

where, L is the Lagrangian

L =
1

2
gµν(x)

(
ẋµẋν + ψµDtψ

ν
)

(14.5)
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and Dt is the covariant derivative:

Dtψ
ν = ψ̇ν + ẋλΓνλκ(x)ψκ. (14.6)

Our goal for today is to evaluate this path integral and arrive at the right hand side of
(14.1).

14.1 β-dependence of the path integral normalization

A very important ingredient in our computation will be the fact that the index, as we
discussed in detail in lecture 12, is independent of β. To make use of this fact, let us
change t→ βt in the path integral (14.4) to obtain

ind (D) =

∫
PBC

DxDψ exp

(
−β
∫ t=1

t=0

L[x, ψ]dt

)
. (14.7)

The β-dependence is now fully contained in the prefactor of the Lagrangian. Note that
this is where in quantum field theories one would write 1/~, so we can identify β with the
inverse of Planck’s constant.

This identifiction is useful if we want to see what it means that this path integral is
independent of β ∼ 1/~. In particular, recall that in lecture 2, we obtained a path integral
expression for a quantity like 〈xN |e−H(tN−t0)/~|x0〉, where tN = t0 + Nδt, by repeatedly
inserting the identity in the form

I =

∫
dxn|xn〉〈xn| (14.8)

at times tn ≡ ti + n · δt and then evaluating expressions of the form

〈xn+1|e−Hδt/~|xn〉 (14.9)

by inserting an additional identity

I =

∫
dpn|pn〉〈pn| (14.10)

and evaluating the p-integral in∫
dpn〈xn+1|pn〉〈pn|e−Hδt/~|xn〉. (14.11)

What we swept under the rug in the computation in lecture 2, but what we are interested
in here, is the normalization of the answer. In particular, since we want to study the
β ∼ 1/~-independence of our path integral, we are interested in the factors of ~ that the
above computation results in. (In fact, these factors always appear in the combination 2π~,
so we will always use that combination and adjust for aditional numerical factors later.)
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Now note that
〈x|p〉 = Ceipx/~ (14.12)

is the position representation of a momentum eigenstate, but what is its normalization
C? Clearly, a plane wave cannot be normalized in the canonical way (so that the total
probability after integrating over x equals 1), but it can be normalized in the sense that

〈p′|p〉 = δ(p− p′) (14.13)

Inserting a set of x-eigenstates the left hand side becomes∫
dx 〈p′|x〉〈x|p〉 = C2

∫
dx ei(p−p

′)x/~ (14.14)

whereas for the right hand side of (14.13) we can use the Fourier representation of the
delta function:

δ(p− p′) =
1

2π

∫
dy ei(p−p

′)y =
1

2π~

∫
dx ei(p−p

′)x/~ (14.15)

where in the last step we substituted y = x/~. Equating the last two expressions, we see
that

C =
1√
2π~

. (14.16)

In (14.11), we therefore obtain two factors of C, but then the integration over p removes
one of those, as1 ∫

dp e−
p2

2~ = C−1. (14.17)

Thus, alltogether, the quantity (14.11) after doing the p-integrals contains one factor of
C. For every p-integral, there is one x-integral2, and so we see that every xn-itegral in the
path integral comes with a factor of C: we should view the Dx(t)-integration in the path
integral as the limit of a large number of x-integrations normalized as∫

Dx(t) = lim
N→∞

∫ ∏ dxi√
2π~

(14.18)

Let us now replace β = 1/~ and investigate what this normalization means for the β-
independence of the index.

1Here, we set the mass m appearing in the kinetic energy p2/2m equal to 1, as we will not be interested
in the dependence on this parameter.

2At least in the large N limit; in this example there are actually N integrals over pn and (N − 1)
integrals over xn. However, in the situation with periodic boundary conditions that we are interested in,
there is one additional integral over x0 = xN .
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14.2 Saddle point approximation to the path integral

Let us begin by looking at a toy model: a single x-integral, which we now normalize
according to what we have learned:

Z =

√
β

2π

∫
dx exp (−βf(x)) . (14.19)

Let us now first assume that the function f(x) has a single extremum at x = x̄. We then
expand f(x) around this extremum:

f(x) = f(x̄) +
1

2
(x− x̄)2f ′′(x̄) +

1

6
(x− x̄)3f (3)(x̄) + . . . (14.20)

Note that the linear term on the right hand side is absent because we have an extremum
at x = x̄. Writig (x− x̄) = y/

√
β, we can write Z as

Z =
1√
2π
e−βf(x̄)

∫
dy e−f

′′(x̄)y2 exp

(
1

6
β−1/2y3f (3)(x0) +

1

24
β−1y4f (4)(x0) + . . .

)
(14.21)

To evaluate the integral, one would normally expand3

exp

(
1

6
β−1/2y3f (3)(x0) +

1

24
β−1y4f (4)(x0) + . . .

)
=
∞∑
n=0

an(y)β−n (14.22)

and then evaluate the integral order by order in β−1 ∼ ~ to get an (asymptotic) ~-expansion
of the result. However, we are interested in the situation where our final answer is ~-
independent, and so we see that we only need the leading term a0 = 1 in the expansion.
Moreover, the result can only be ~-idependent if f(x) = 0 so that the prefactor does not
contribute. Thus, in the β-independent case, we really only need to evaluate the “quadratic
fluctuation part” of the integral around the saddle point:

Zquadratic =

∫
dy e−f

′′(x̄)y2 (14.23)

This makes our lives a lot easier: evaluating a β-independent path integral simply boils
down to Gaussian integration! Of course, this is not quite as simple as the above example
may appear to indicate, as we still need to address two issues:

1. There may be (and actually: will be) more than a single saddle point for our action,

2. We must know how to do infinte-dimensional Gaussian integrals.

We will now address these issues one by one.

3Note that odd powers of β−1/2 appear with odd powers of y, and will therefore not contribute to the
integral
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14.3 Saddle points of the supersymmetric action

Recall that the quantity in the exponent of our path integral is the supersymmetric action

S =

∫ 1

0

dt
1

2
gµν(x)

(
ẋµẋν + ψµDtψ

ν
)

(14.24)

The saddle points of the path integral are the configurations xµ(t), ψµ(t) for which the
action does not change to first order – that is: the solutions to the Euler Lagrange
equations of motion! The derivation of those equations is tedious but straightforward
(see Nakahara); here, we simply state the result:

0 = Dtψ
µ

0 = −gλµDtẋ
µ +

1

2
Rµνλρψ

µψν ẋρ. (14.25)

One set of solutions is clear from these equations: the constant solutions

xµ(t) = xµ0 , ψµ(t) = ψµ0 (14.26)

Note that for these solutions, one moreover has that S = 0, so that indeed their zeroeth
order contribution vanishes. In fact, it can be shown that these are the only saddle points
that contribute in the limit β → 0, and since our result is β-independent, we therefore only
need to take those into account.

So our saddle points are simple: they are the constant configurations in time. (These clearly
also satisfy the periodic boundary condition.) Now what do we do with the fact that there
is more than a single saddle point? The answer is: we need to add the contributions
of the different saddle points. This may not seem trivial from what we have said so
far, and in fact in our simple example in the previous subsection it is far from obvious
that if there are two or more saddle points for f(x), one should add their perturbative
contributions. In fact there is a long story in that case: the separate contributions from
saddle points are only defined as formal power series in ~ as they are asymptotic and do
not converge for any value of ~. To turn them into actual functions one needs to Borel
resum one of these power series, and in the process it becomes clear that the contributions
of the Borel sums of the power series around other saddle points must be added as well.
This leads into the topic of resurgence, a very interesting topic but not one we will delve
into here.

For our path integral, we are in a rather different situation, as there are no ~-corrections,
and so the power series are not asymptotic but actually terminate. So how do we see that
we need to add contributions from all different saddle points here? The easiest (though
admittedly handwaving) way to see this is to Fourier expand the periodic paths:

xµ(t) = xµ0 + ξµ(t)

= xµ0 +
∑
n 6=0

ξµne
2πint. (14.27)
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Here, we have set β = 1 as we already discussed how to get the required, β-independent
result. Now we “change variables” in the path integral, and integrate over the modes xµ0
and ξµn instead of over the individual values xµ(t). Clearly, in this way one also integrates
over all periodic paths. One may of course worry about a Jacobian coming from this change
of variables, but since (a) the path integral normalization is not well-defined to begin with,
(b) we have already made sure that the final answer has the correct β-(in)dependence and
(c) we will fix the numerical normalization of our result in an independent way later on,
we will put on our “physicist’s hat” and will not worry about this Jacobian.

The nice thing about the above change of integration variables is that now it is clear that
we must integrate over all constant modes xµ0 , so that indeed we “add” all contributions
from the different saddle points. All that remains is to evaluate the contributions coming
from the terms quadratic in the fluctuations ξµn .

Before evaluating those, let us note (again, without detailed proof) that we can do a similar
change of variables for the fermionic coordinates: one can write

ψµ(t) = ψµ0 +
∑
n6=0

ηµne
2πint (14.28)

and integrate over the Grassmann variables ψµ0 and ηµn. In fact, the reader may have
wondered what the “equation of motion” Dtψ

µ = 0 actually meant, as ψµ(t) cannot “take
on any values”, and so cannot be “constant” either. It should now be clear what is meant:
the saddle points (“solutions to the Euler-Lagrange equations”) are parameterized by the
modes ψµ0 , and the fluctuations around them by the modes ηµn.

14.4 Gaussian integrals and determinants

As we learned from our simple example, we now need to evaluate the quadratic fluctuations
around our saddle points. To this end, it is very convenient to choose a particular bosonic
saddle point x0 and choose coordinates such that the metric at x0 satisfies

gµν(x0) = δµν ,
∂

∂xλ
gµν(x0) = 0. (14.29)

Of course, we cannot impose any further conditions on higher derivatives of the metric, as
those are determined by the curvature of the manifold. In these coordinates, we can now
expand the action

S =

∫ 1

0

dt
1

2
gµν(x)

(
ẋµẋν + ψµDtψ

ν
)

(14.30)

up to second order in the fluctuations, and obtain after a short computation that

S2 =

∫ 1

0

dt

(
1

2
δµν ξ̇

µξ̇ν +
1

2
δµνη

µη̇ν +
1

2
R̃µν(x0)ξµξ̇ν

)
(14.31)
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where

R̃µν(x0) =
1

2
Rµνρσ(x0)ψρ0ψ

σ
0 (14.32)

is very similar to the curvatur two-form, but with dxµ replaced by the (equally anti-
commuting) Grassmann variable ψµ0 .

Let us do one further partial integration, and rewrite the quadratic part of the action as

S2 =

∫ 1

0

dt
1

2
ξµ
(
−δµν

d2

dt2
+ R̃µν(x0)

d

dt

)
ξν +

1

2
ηµ
(
δµν

d

dt

)
ην (14.33)

Now, we are ready to do the Gaussian integrals. Recall that for a bosonic Gaussian integral
over several variables, we have∫

dny exp

(
−1

2
yiAijy

j

)
=

2πn/2√
detA

. (14.34)

For a fermionic Gaussian integral (i.e. one over Grassmann variables), we have seen in
exercise 9.1 that ∫

dnθ exp

(
−1

2
θiBijθ

j

)
=
√

detB. (14.35)

As a result, we can write∫
DξDη e−S2 = N

√√√√ det′
(
δµν

d
dt

)
det′

(
−δµν d

2

dt2
+ R̃µν(x0) d

dt

) . (14.36)

where the prime is inserted to remind us that both ξ and η do not include the zero modes.
In this expression, N is a normalization factor that we still need to determine; it should
be built up from all of the factors of

√
2π that have appeared in our expressions, but since

we have an infinite number of those from (14.34) in the numerator and an infinite number
from (14.18) in the denominator, we of course need to be careful in simply crossing them
out. The easiest way to determine N is to evaluate all of the expressions on a flat manifold
of dimension 2d; this is done in Nakahara, and it turns out the correct normalization is

N = id. (14.37)

We plug this in in (14.36), and also note that since determinants of products factorize4, we
can divide out the common factor of δµν

d
dt

in numerator and denominator. This leads to∫
DξDη e−S2 = id det′

(
−δµν

d

dt
+ R̃µν(x0)

)−1/2

. (14.38)

4This is in fact something that needs to be shown for properly defined infinite-dimensional determinants,
but it turns out to be true if e.g. the zeta-function regularization is used. Also, note that in one case we
are taking a determinant over bosonic modes and in the other case over fermionic modes, but since we are
dealing with a supersymmetric theory and zero modes are excluded in this computation, these can indeed
be mapped to each other in a 1-to-1 fashion.

7



where the determinant is over all bosonic non-zero modes. Let us focus on the modes ξµn
for a single value of n first. For these modes, after block-diagonalizing Rµν(x0), we can
write the determinant as

det


− d
dt

y1

−y1 − d
dt

. . .

− d
dt

xn
−xn − d

dt



= det


−2πin y1

−y1 −2πin
. . .

−2πin xn
−xn −2πin


=

d∏
i=1

(
y2
i − (2πn)2

)
(14.39)

To obtain the full determinant, we need to multiply this result for all n 6= 0. Of course,
positive and negative values of n give the same result, so we obtain

det′
(
−δµν

d

dt
+ R̃µν(x0)

)
=

d∏
i=1

∏
n≥1

(
y2
i − (2πn)2

)2

=

[
d∏
i=1

∏
n≥1

(2πn)2
∏
n≥1

(
1− y2

i

(2πn)2

)]2

(14.40)

The second factor in this expression is Euler’s product formula for the sine:∏
n≥1

(
1− y2

(2πn)2

)
=

sin(y/2)

y/2
(14.41)

If you have never seen this formula before, we will prove it in exercise 2. The first factor
in the determinant seems more worrisome, as it is essentially the product of all positive
integers, which appears to wildly diverge. Fortunately, there is a method to regularize such
products leading to finite results; this method of ζ-function regularization is presented in
exercise 1. The result is surprisingly simple:∏

n≥1

(2πn)2 → 1. (14.42)

Thus, we find that

det′
(
−δµν

d

dt
+ R̃µν(x0)

)
=

d∏
i=1

(
sin(yi/2)

yi/2

)2

(14.43)
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14.5 The index theorem

Now, we can gather all ingredients that we have calculated. The formula of our index then
becomes

ind(D) =

∫ 2d∏
µ=1

dxµ0

2d∏
µ=1

dψµ0 i
d

d∏
i=1

(
y1/2

sin(y1/2)

)
(14.44)

Here, the integral over the bosonic zero modes clearly is an integral over the manifold
M . What about the integral over the fermionic zero modes? Recall that integration over
Grassmann variables equals differentiation, and so this integration picks out the term in
the y-expansion in which every ψµ0 appears once. In fact, if we now replace ψµ0 → dxµ, this
is precisely what the notation in the index theorem implies. The above formula therefore
simplifies in form to

ind(D) =

∫
M

id
d∏
i=1

(
xi/2

sin(xi/2)

)
. (14.45)

where we indicated the replacement ψµ0 → dxµ by replacing yi with xi. The very last step
in our computation is to note that x

sinx
is an even function in x, so that the result is only

nonzero if d is even. In that case, id = (−1)d/2, and so we can obtain the same result by
removing the factors of i and replacing the sine by a sinh:

ind(D) =

∫
M

d∏
i=1

(
xi/2

sinh(xi/2)

)
. (14.46)

The right hand side now contains exactly the Â-genus:

ind(D) =

∫
M

Â(M). (14.47)

Thus, we have completed the physics proof of the Atiyah-Singer index theorem for the
Dirac operator.
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